Atomic Decomposition for Weighted Bergman Space La on the Unit Ball of C

نویسنده

  • S. M. Vaezpour
چکیده

Throughout this paper by using the frame theory we give a short proof for atomic decomposition for weighted Bergman space. In fact we show that the weighted Bergman space L 2 a (dA α) admit an atomic decomposition i.e every analytic function in this space can be presented as a linear combination of " atoms " defined using the normalized reproducing kernel of this space .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

A Theorem of Nehari Type on Weighted Bergman Spaces of the Unit Ball

Received 13 June 2008; Revised 12 October 2008; Accepted 20 November 2008 Recommended by Stevo Stevic This paper shows that if S is a bounded linear operator acting on the weighted Bergman spaces Aα on the unit ball in C n such that STzi TziS i 1, . . . , n , where Tzi zif and Tzi P zif ; and where P is the weighted Bergman projection, then S must be a Hankel operator. Copyright q 2008 Y. Lu an...

متن کامل

Weighted Bmo and Hankel Operators between Bergman Spaces

We introduce a family of weighted BMO spaces in the Bergman metric on the unit ball of C and use them to characterize complex functions f such that the big Hankel operators Hf and Hf̄ are both bounded or compact from a weighted Bergman space into a weighted Lesbegue space with possibly different exponents and different weights. As a consequence, when the symbol function f is holomorphic, we char...

متن کامل

On a New Integral-Type Operator from the Weighted Bergman Space to the Bloch-Type Space on the Unit Ball

We introduce an integral-type operator, denoted by P φ , on the space of holomorphic functions on the unit ball B ⊂ C, which is an extension of the product of composition and integral operators on the unit disk. The operator norm of P φ from the weighted Bergman space A p α B to the Bloch-type space Bμ B or the little Bloch-type space Bμ,0 B is calculated. The compactness of the operator is cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009